Apple 2 Computer Information ¢« Document 023

g g
S Apple 2 Computer Technical Information S

Apple Il Computer
Family Information

4//7/@ 2 S/W#ﬂv %Jcr/,‘a%m
Stre brznsck — BYTE /M /77F

Document # 923

Ex Libris David T. Craig

“DTCA2DOC-023-00.PICT” 135 KB 2001-04-03 dpi: 300h x 300v pix: 2052h x 2736v
| Source: David T Craig Page 0001 of 0009 |

Apple 2 Computer Information ¢« Document 023

The Apple-i

In this article, Steve Wozniak
describes his creation, the
Apple II1. Notice the detailed
description of the Apple II
internals including the
unique design of the video
generator. This design
greatly decreased the number
of required chips. More than
fifteen years after its creation,
the Apple II was still being
sold. (1977:5 p34)

364 BEST OF BYTE

To me, a personal computer should be
small, reliable, convenient to use and inex-
pensive.

The Apple-l, my first video oriented
single board computer, was designed late in
1975 and sold by word of mouth through-
out California and later nationwide through
retail computer stores. | think that the
Apple-1 computer was the first microproces-
sor system product on the market to com-
pletely integrate the display generation cir-
cuitry, microprocessor, memory and power
supply on the same board. This meant that
its owner could run the Apple BASIC
interpreter with no additional electronics
other than a keyboard and video monitor.
The Apple-l video computer board was
originally intended as a television terminal
product which could also operate in a stand
alone mode without much in the way of
memory, although it did have a processor,

Photo 1: A color test chart
showing the 15 shades of
hue available from the
Apple-11 as presented on a
typical commercial color
set, using one of several
RF modulators available
on the market. The Apple
BASIC program used to
generate this color is
shown in the text portion
of this split screen
(graphics and text)
display.

Stephen Wozniak

Apple Computer Co

20863 Stevens Creek Bivd B3-C
Cupertino CA 95014

space for 8 K bytes of 4 K dynamic memory
chips, and its shared video generation and
dynamic memory refresh logic. Apple-l was
sold as a completely assembled and tested
processor board with a price under $700 at
the retail level.

The latest result of my design activities is
the Apple-Il which is the main subject of
this system description article. The Apple-ll
builds upon this idea by providing a com-
puter with morc memory capability, a read
only memory (ROM) BASIC interpreter,
color video graphics as well as point graphics
and character graphics, and extended sys
tems software,

Integral Graphics

A key part of the Apple-1l design is an
integral video display generator which di-
rectly accesses the system’s programmable

“DTCA2DOC-023-01.PICT” 246 KB 2001-04-03 dpi: 400h x 400v pix: 2640h x 3536v
Page 0002 of 0009 |

| Source: David T Craig

Apple 2 Computer Information ¢« Document 023

memory. Screen formatting and cursor con- marily by the software scrolling routines in
trols are realized in my design in the form of the system read only memory.

about 200 bytes of read only memory which Since the Apple-ll incorporates this dis-
are built into the Apple-ll's mask pro- play gencrator as a part of its design, its text
grammed 8 K bytes of read only memory. A mode becomes the terminal for the system.
1K bytc scgment of the processor’s main The display has 24 rows of 40 characters
memory is dedicated to the display gener- displayed on an ordinary black and white or
ator, although it is also accessible to pro- color television screen. Each character in the
grams. The display transfer rate is the time it Apple-11 design is a 5 by 7 dot matrix, so the
takes to fully define the contents of this present version of the system only imple-
segment of memory, and averages about ments upper case characters of the 6 bit
1000 characters per second, limited pri- ASCII subset, as well as the usual numbers

VIDEO GENERATOR / MEMORY / PROCESSOR TIMING AND CONTROL

} ! ‘

®, , ROW OR
COLUMN SELECT '
' PHASE COLOR
. .
VIDEO [GEN. ADDR PROGRAMMABLE ¢)¢ SHIFTER |————/| GENERATOR
MEMORY

————— J ADDRESS £
_____ A = {4K TO 48K BYTES)
PROCESSOR COLOR

‘ VIDEO

SIGNAL
MEMORY)| SHARACTER) sermuizer
*ROW AND COLUMN DATA 8
ADDRESSES 81 |IN
SERIAL SERIAL
8 MEMORY VIDEO
DATA OUT . (GRAPHICS) (cHaR)
PROCESSOR BIDIRECTIONAL SYSTEM BUS — N SERIALIZER
8 8
"MUX "« MULTIPLEXER

X SOFTWARE
CONTROLLED
VIDEO MuX

VIDEO MODE CONTROL

TIMING : 0" ————y

6502 PROCESSOR'S —_ 53
®| CLOCK SHOWING

WHEN AND BY WHOM

MEMORY 1S ACCESSED -

[N v (%]
VIDEO ACCESS PROCESSOR
AND MEMORY ACCESS AND
REFRESH PROGRAM
EXECUTION

Figure 1: A block diagram of the Apple-1I display generator. The generator sneaks into memory on the externally unused phase
of the 6502 processor's 2 phase clock. The output of the memory is processed (after a 1 clock cycle delay) to produce a net
video output through a software controlled video multiplexer. The three major modes of operation are:

Color graphics, in which each 4 bit nybble of the byte is treated as a color definition code by the color generator.

Charucter generation in which the 8 bit code is processed with u read only memory to gencrate a dot matrix pattern which

is serialized and sent to the video multiplexer.

Black-white point graphics in which the 8 bit word from memory is used to control the contents of a segment of a 280 by

160 point grid. ’
The timing diagram shows how the basic 1 us processor cycle period is split up into a video memory cycle and a microprocessor
memory cycle. Since the processor is engaged in internal housekeeping operations during the first (high level) half of a dj
period, this segment of time can be used by the video generator to sneak into memory. Since all of memaory is continuously
being scanned by the low order bits out of video generator, the entire 48 K byte field (maximum) of dynamic memory is
refreshed by the video portion of the cycle. (Refreshing of dynamic memory means scanning through all possible low order
addresses to recharge the internal memory capacitors of the chips.)

BEST OF BYTE 365
“DTCA2DOC-023-02.PICT” 265 KB 2001-04-03 dpi: 400h x 400v pix: 2608h x 3488v

| Source: David T Craig Page 0003 of 0009 |

Apple 2 Computer Information ¢« Document 023

Photo 2: This series of photos shows
the steps in writing an animated
BASIC game using the Apple-Il com-
puter’s BASIC interpreter. This se-
quence highlights the process of
writing a paddle versus ‘‘wall”’ game
where the object of play is to knock
bricks out of the wall and eventually
get the ball to go all the way through.
This game is similar to many seen in
amusement parks and arcades, and is
typical of the kind of game which can
be implemented with Apple-ll's BA-
SIC software. Using the split screen
graphics and text display mode, the
BASIC statements are shown at the

°

2 roLASa R vs :
12 0097 2g FOR Y46 10 39: HLIN

HEXT Y

Photo 2a: The first step in any game is
to generate the uniform color back-
ground for the action of the game.

L2 g J % I SF e

C 4 TR T e e

TR I S WA I WA

é
|
s

g
E

< 3
'
.i
j
'I
EE

ue
SO

Photo 2b: Then we must add a.liberal
dose of obstacles and field pieces to
make the problem interesting. For this

bottom of each picture.

366 BEST OF BYTE

Here we use a blue field.

and graphics available in standard character
generator read only memory parts. Assuming
that the video display is the currently
assigned system output device, the display is
accessed through our system software in
read only memory by using a subroutine
called COUT which adds text to the screen
using an automatic scrolling technigue. This
is typical of the many read only memory
routines which I've incorporated into the
ROM to provide complex features with
relatively simple user interfaces. Another
example of such a software feature is a user
definable scrolling window. This means that
the user of the system can pick any of four
coordinates defining any rectangular subset
of the viewing area of the video screen as the
current scrolling zqane. The remainder of the
display will remain frozen and data in the
window will scroll normally when COUT is
accessed. This is a most useful feature: For
example, the user can set up a game back-
ground or instruction menu in one part of
the screen while using the remainder of the
screen for scrolling the variable data.

In the text mode, each character position
may be displayed in normal (white character
on black background) or inverse, or flashing
modes. This information is specified by the
high order bits of each character stored in
the display memory. The cursor position, for
example, is indicated by forcing the charac-
ter at the cursor location to be in the
flashing modce with inverse video.

User application programs may switch the
display mode from character to color graph-
ics with a single instruction, dividing the
screen instantly into a patchwork of con-
trollable color on a grid of 40 horizontal
locations by 48 vertical locations. Each cell
in the grid may be one of 15 colors, and
software built into the system read only
memory can be used to define the color of

gume, the major obstacle is a brick
wall of orangish (color 13) and green-
ish (color 12) bricks. Later on, since
we can look at the contents of the
screen directly, the game algorithm
will be munipulating these bricks.

any point as set by X and Y coordinate
integer values. Photo 1 shows a color scale
for the 15 colors possible, and a simple
BASIC program which generated the display.
Here the scrolling window features are used
to set the color graphics mode in the fixed
portion of the screen (above) and set the
text mode of operation in the scrolling
portion (below). This mixed mode provides
a 40 by 40 color graphics grid plus four lines
of scrolling text at the bottom of the screen.
A routine in the system read only memory
selects this mode and sets up the scrolling
window corresponding to the text portion.
I've found this mode especially useful to
BASIC programmers who can write anima-
tion games like Pong while holding a tradi-
tional BASIC conversation in the text.region
of the screen. This split screen mode of
viewing is used for all the color graphics of
photo 2 as well.

The same display memory region that is
used for the text display is used for the color
graphics. System software routines supplied
in the read only memory of the processor
allow users to simply clear the display, select
colors, plot points, draw horizontal and
vertical lines, and sense the color values
presently at specilied sereen positions. | like
to think of these system software subrou-
tines as enhancements to the 6502 instruc-
tion set for the purposes of display control.

High resolution graphics is the remaining
Apple-tl display mode. This mode of display
is set up by system software routines which
are delivered with the computer, but are not
built into the system read only memory.
(Even with 8 K bytes for the read only
memory space, there sometimes isn’t enough

“DTCA2DOC-023-03.PICT” 357 KB 2001-04-03 dpi: 400h x 400v pix: 2592h x 3472v
Page 0004 of 0009 |

| Source: David T Craig

Apple 2 Computer Information ¢« Document 023

= w om
- R

bad = =2 % % -3 |

RS E2. KR NEC W

el o o o
O~ R W

et 2 2 S @ B 48 3 & ¥]

:
:
”,

IR 2 = - 3 2 3

'
S E R S .
"
—~3
w

b3

Photo 2c: Next, we must of course
add a paddle, here created with a
deeper yellowish orange (color 9) hue.

room to fit all the needed features.) In the
high resolution mode, 8 K bytes of main
memory store the data for a display of
280 horizontal dot positions by 192 vertical
dot positions; so to allow enough room for
some BASIC software to play games with
this mode the system requires at least 12 K
of memory. If a color television is used with
this high resolution mode, the available
colors are black, white, violet and green. A
mixed mode with 160 rows of 280 dots plus
four lines of scrolling text can also be set up.
Applications of the high resolution graphics
modes include game boards, mazes, maps,
plots and histograms, user definable char-
acter sets, and games like Space War in its
original animation graphics versions.

Some Details

All the Apple-1l video modes work iden-
tically, using a common clock timing chain
which is shared by the processor, memory
refresh and video generation logic. During
each microprocessor clock cycle's @ clock
pulse, an address is specified by the video
circuits and directed to the programmable
memory of the system through the address
multiplexor (MUX) of figure 1. Display data
is received by the three forms of video data
generators toward the end of the 9 pulse,
and this data is then latched for use during
the entire next clock cycle. Since all this
action occurs during the & pulse which
lasts 500 ns, the video generator is able to
take over the access to the memory at a time
when_the 6502 processor is busy with
internal housekeeping and processing opera-
tions which leave the data bus free. During
the o pulse, when the processor takes
command of the bus, the programmable
memory of the system is used by the
executing program as if the video generator

Photo 2d: Then, since no video court
game is complete without a ball we
must add a square “ball” to the
program, and set up some of the
parameters of its motion.

didn’t exist at all. Because the integrated
display design uses this direct memory access
technique without stealing processor cycles,
it is possible to program accurate and pre-
dictable timing loops in software as if no
DMA were present in the system.

Memory

It is alleged in the Santa Clara (Silicon)
Valley that the microprocessor was invented
to sell programmable and read only memory
chips. It certainly has been the case that one
microprocessor in the past would often
support hundreds of memory chips, but
times change. Technology has since
bestowed upon us the 4 K bit and 16 K bit
dynamic programmable memory chips.

Apple-ll was designed to operate with the
16 pin dynamic programmable memory
parts, which come in 4 K and 16 K versions
which are (with some subtleties) pin for pin
compatible.

The Apple-Il board is supplied with
sockets for three blocks of memory, each of
which may be configured to use either 4 K
or 16 K dynamic programmable memory
parts, with intermixing allowed. This means
that if you were to purchase an Apple with
4 K bytes of memory and later want to add
16 K bytes, there is no need to scrap the 4 K
chips.

Dynamic memories have one design
characteristic which is not present in the
simpler (but more expensive) static memo-
ries. This is the fact that they use capacitive
storage elements built into the chips which
must be periodically recharged (‘‘re-
freshed””) to prevent the information from
disappearing.

One of the elegant simplifications
provided by a system such as the Apple-i|
with its built-in display is the fact that
refreshing the entire memory address

“DTCA2DOC-023-04.PICT” 353 KB 2001-04-03 dpi: 400h x 400V pix: 2592h x 3472v

Photo 2e: Findlly, the last
steps in finesse are the
score displays and related
captions which complete
the game. This game is
controlled by using one of
the analog inputs of the
Apple-1l to determine the
index of the current loca-
tion of the paddle, so that
by twisting the pot the
paddle is moved; the
speaker output is used to
generate a sound burst
when the ball hits the pad-
dle or wall.

BEST OF BYTE 367

Rebons & e

| Source: David T Craig

Page 0005 of 0009 |

Apple 2 Computer Information ¢« Document 023

(a)

QNN ()
ODDOE®®U—
MZD LMD

=

> DDTD
TUVVVTVOVOTVTUD
YUYV UVUDTVVUDT

>RU
#30
#30
#30
#30
#30
840
#40
#40
#40
#40
DON

]
m

(b)

END

NSNS
DD
I
— ()
DT
e
Lo

D
e
(AL
RO

”~
M

Photo 3: Two examples of the Apple BASIC interpreter, in the form of programs with several lines of execution results. (a) The
interpreter has a symbolic trace feature which allows dumping of named variubles whenever a change occurs. This simple
program illustrates this “DSP” commund with a simple computational program, (b) A similar debugging leature of Steve
Worniak’s Apple BASIC interpreter is u method of running the interpreter with a stutement number trace, by giving a TRA CE
command instead of RUN in the command mode of the interpreter. 1his enables one to fairly quickly debug a BASIC program
by examining its etfect on variables or its course of evolution through statement numbers, -

368 BEST OF BYTE

space of dynamic memory chips is inherent
in the operation of the videco display genera-
tor. On successive pulses of the video dis-
play, it cycles through all the low order
addresses of the memorics as the memory is
scanned to generate the video image. But
scanning through the addresses within the
maximum allowable time is the algorithm
used to accomplish the required refreshing
of the memories; so with this video genera-
tor integral to the computer, refreshing of
the memories happens to come for frec and
is totally wtransparent to the user with no
extended, missing or delayed cycles. This
characteristic is sometimes called “hidden
refresh.”

Standard Peripherals

I designed the Apple-1l to come with a set
of standard peripherals, in order to fit my
concept of a personal computer. In addition
to the video display, color graphics and high
resolution graphics, this design includes a
keyboard interface, audio cassette interface,
four analog gamc paddle inputs (for user
supplied potentiometers which vary a re-
sistance which the processor measures),
three switch inputs, four 1 bit annunciator
outputs, and even an audio outpul to a
speaker. Also part of the Apple-Il design is
an 8 slot motherboard for 10 which has a
fully bulfered bus, prioritized interrupts,
two prioritized direct memory access (DMA)
schemes, and address decoding at the indivi-

“DTCA2DOC-023-05.PICT” 320 KB 2001-04-03 dpi: 400h x 400v pix: 2648h x 3440v

dual slots so that multiple bit address de-
coders are not required on peripheral boards.

The Apple-ll cassctte interface is simple,
fast, and | think most reliable. The data
transfer rate averages over 180 bytes per
second, and the recording scheme is com-
patible with the interface used with the
Apple-I. This tape recording method can be
used with any inexpensive recorder, but as
with any such use of audio media only high
quality tapes should be used in order to
avoid problems duc to dropouts from poor
oxide coatings on the tapes. In the Apple
audio cassetle interface, timing is performed
by softwarc which is referenced to the
system clock. A zero bit is defined as a full
cycle of a 2000 Hz signal (500 ps long), while
a one bit is defined as a full cycle of a
1000 Hz signal (1 ms long). While reading data,
full cycles arc sampled, never half cycles, a
method which tends to provide immunity to
DC offset and other forms of distortion. All
the cassette management routines are avail-
able to user programs as subroutine calls
from assembly language directly, or through
hooks in the BASIC interpreter.

The Apple-11 analog game control paddie
circuits are based upon inexpensive timer
chips of the 555 type. I've used a quad timer
of this type, called the 553, as shown in
figure 2. To read the value of resistance on
the paddle's potentiometer, the timer is
strobed under software control using rou-
tines in the system read only memory. The

| Source: David T Craig

Page 0006 of 0009 |

Apple 2 Computer Information ¢« Document 023

tFraaL

ag
ljh

frovlares

b b A AR W b by

DD DD
SISO e

Photo 4: Far from being limited to interpretive integer BASIC, the Apple-11 includes some powerful debugging and software
development aids at the machine language level. Here at (a) is an example of its dissassembler mode of operation, invoked by the
L command following an address in hexadecimal. A corresponding nonsymbolic assembler praogram will perform transformations
in the other direction from text sources. Here at (b) is an example of the instruction trace command, which allows a machine
language program to be followed mnemonically via dynamic disassembly, with register and condition code contents indicated

after each instruction,

input routine then enters a loop which
counts the length of the timer output pulse,
which is a function of the paddle potentiom-
eter’s setting. To prevent endless loops if a
wire breaks, the paddle scan routines exit at
the maximum count of 255. The resolution
of the loop is 12 us per count.

One memory address is dedicated to the
audio output port which drives a speaker.
When this memory location is referenced
from a program, with cither a read or a writc
operation, the speaker drive line is toggled.
Generating tones requires continuous
spcaker toggling by this mecthod, at an
audible rate. The cassette output port works
in a similar (toggle) fashion to generate
audio tones for the tape. The annunciator
outputs each have two corresponding ad-
dresses, with one used to set the output and
the second used to clear the outputs. Switch,
paddle and cassette inputs place their data
on the system bus in the sign bit position
when their corresponding addresses are refer-
enced; this choice of wiring enables software
to test the state of the bit directly with a
conditional branch instruction of the 6502
processor.

Apple BASIC

Apple-1l comes with an Apple BASIC
interpreter in the mask programmed read
only memories of the system. There is no
need to load it off tape, nor to dedicate any

(t)

programmable memory for it. It’s always
there and it is impossible to accidentally
clobber it. This BASIC is essentially similar
to any BASIC with the exceptions that it
only implements 16 bit fixed point arithme-
tic. It also features some unique language
extensions to take advantage of the Apple-ll
hardware features such as color graphics and
to provide corveniences in the form of
debugging aids. It is intended primarily for
games and educational uses.

A monitor command puts you into
BASIC mode, which is indicated on the
screen by a prompt character, “>".
Memory limits for BASIC source programs
and data are set automatically at the time of
entry, but these limits may be varied by user
commands. While in BASIC mode, state-
ments are entered on the current system
input device, which is normally the key-
board.

Apple-Il BASIC is implemented as a
translator-interpreter combination. When a
line is read from the input device, the
translator analyzes it and gencrates a more
efficient internal language facsimile. Syntax
errors are detected at this time. The “nouns”
of this internal language are variable names,
integer constants (preconverted to binary for
execution speed enhancement), and string
constants. The ‘‘verbs’ are 1 byte tokens
substituted for keywords, operators and
delimiters. Because the translator dis-
tinguishes syntax, different verbs arc as-

“DTCA2DOC-023-06.PICT” 330 KB 2001-04-03 dpi: 400h x 400V pix: 2624h x 3456v

BEST OF BYTE 369

| Source: David T Craig

Page 0007 of 0009 |

Apple 2 Computer Information ¢« Document 023

ONE SECTION, 553 QUAD TIMER

FROM | BIT
OUTPUT PORT

ONESHOT

T0 t BIT

B EEEEEaRE——
TRIGGER OQUT INPUT PORT
CONTROL

+V

]
]
[]
I
APPLE | REAL WORLD
'
< l ' I >
]
t
]
]

USER SUPPLIED
VARIABLE RESISTANCE

C—va—

Figure 2: How to make a 1 bit measurement of an analog parameter for
games (or perhaps we should say ‘2 bit"). Basically, a 555 style timing
element is set up so that it can be triggered by a 1 bit output port. After
triggering the oneshot, the processor enters a timing loop continuously testing
the 1 bit input port until the end of the oneshot’s cycle, which is controlled

by the game parameter potentiometer,

The result is an integer count

developed by the timing loop which gives a measure of how long the oneshot
pulse lasted, and hence a measure of the position of the input potentiometer,
Apple-1l implements four of these resistance measuring ports (which have
plenty of accuracy for game contexts with graphics display feedback but are
hardly not to be interpreted as having any absolute accuracy independent of

hand-eye coordination).

Author’s Note

So as not to slight their
efforts, | would like to
thank Allen Baum for
originating the Apple-ll
debug software, Doug
Kraul for helpful sugges-
tions on the 10 structure,
and Randy Wigginton and
Chris Espinosa for many
long and late hours testing
the Apple BASIC....SW

370 BEST OF BYTE

signed to different usages of the same
symbol. For example, three distinct verbs
represent the word PRINT, depending on
whether it is immediately followed by a
string source, an arithmetic expression or
nothing. Thus this distinction need not be
made at execution time. For each verb there
exists a subroutine to perform that specific
action. Listing a program actually involves
decompiling the internal language back to
BASIC source code. Those statements with
line numbers are stored as part of the user
program, while those without line numbers
are executed immediately. [f desired, the
Apple BASIC interpreter’s editing functions
can be set to generate line numbers auto-
matically. Although some commands are
valid only for immediate execution and
others only for programmed execution, most
can be employed in both ways. In the
BASIC source programs, multiple statements
may reside on the same line, separated by
colons (*:').

BASIC language statements are stored in
user memory as they are accepted and
variables are allocated space the first time
they are encountered during immediate or
programmed execution. When a program
terminates, whether by completion, inter-
ruption or error conditions, all variables are
preserved. Programs may be interrupted in
execution by typing an ASCII control C; it is
then possible to examine and modify a few

“DTCA2DOC-023-07.PICT” 374 KB 2001-04-03 dpi: 400h x 400v pix: 2584h x 3432v

variables in immediate mode, then continue
execution at the point of interruption by
typing the CONtinue command. BASIC pro-
vides the line number of the statement as the
point of interruption when this sequence is
used. The entire variable space is cleared to
zero when BASIC is initialized by the CLR
command, and prior to executing the RUN
command. (It is possible to carry variables
from one program to another, but to initiate
the sccond program a GOTO command must
be used instead of RUN in order to override
the automatic clear at the beginning of
execution of a new program.)

The interpreter consists of a standard
expression evaluator and a symbol table
routine for allocating variable storage similar
to those described by Prof Maurer in his 2
part series in the February and March 1976
issues of BYTE. As statements are scanned,
nouns and verbs are encountered. Variable
names resuft in calls to the symbol table
routine which pushes address and length
information on the noun stack (operand
stack). Constants are pushed directly onto
this stack. Verbs are pushed onto the verb
stack (operator stack) after popping and
executing any verbs of greater priority. A
verb is exccuted by calling its associated
subroutine. Tables define priorities and rou-
tine entry addresses for all verbs. Keywords
such as THEN or STEP, and delimiters such
as commas and parentheses, are dealt with
just as though they were arithmetic opera-
tors. Verb routines obtain their arguments
from the noun stack. Because verbs such as
parentheses tend sometimes to be of low,
and other times of high priority, cach verb is
actually assigned two priorities (left hand-
right hand). One represents its tendency to -
force execution of other verbs, the second
its tendency to be executed.

Interactive Monitor

The entry into BASIC, as well as other
user oriented features of the Apple-ll, is
provided by an interactive keyboard monitor
which serves as an aid to writing and
debugging machine language programs for
the 6502 processor of the system. The user
enters commands from the keyboard speci-
fying data and address parameters in hexa:
decimal. Multiple commands are permitted
on the same line and cditing leaturcs facili
tate error correction. | completely wrote and
debugged Apple BASIC using the monitor as
my only software development tool. It was
of course the first hand assembled program |
wrote for the system. In addition to the
direct monitor commands, a number of
subroutines were included in the Apple-ll’s
mask programmed system read only memory

| Source: David T Craig

Page 0008 of 0009 |

Apple 2 Computer Information ¢« Document 023

Sweet Sixteen Calling Sequence:

2089 F6 —~- —— - —— - —— —— —_———

N, —— N Sm——
JSR SWEET 16 6502
SWEET16 OP CODES SWEET16 CODE
RETURN
(leave 6502 OP CODE

(reenter direct

direct execution)
6502 execution)

SWEET 16 OP CODES {16 Bit Operands, 2's Complement Arithmetic)

Op Instr Op
Code Length Description Code Length Description
00 1 Return to 6502 mode —_— e~
01 2 Branch always 1R 3 R+2 byte constant {Load register immediate)
02 2 Branch no carry 2R 1 ACC+R
03 2 Branch on carry 3R 1 ACC-R
04 2 Branch on positive 4R 1 ACC+@R, R+~R+1
05 2 Branch on negative 5R 1 ACC—@R, R~R+1
06 2 Branch if equal 6R 1 ACC+@R double
07 2 Branch not equal 7R 1 ACC—@R double
08 2 Branch on negative 1 8R 1 R<R-1, ACC~@R (pop)
09 2 Branch not negative 1 9R 1 R+~R—-1, ACC~@R
0A 1 Break to monitor AR 1 ACC—@R (pop) double
0B 1 No operation BR 1 COMPARE ACCto R
0c 1 No operation CR 1 ACC—ACC+R - ;
0D 1 No operation DR 1 ACC+ACC-R The Apple-Il monitor re_ad
OF 1 No operation ER 1 R—R+1 only memory also contains
OF 1 No operation FR 1 R«R-1 an interpreter program
called SWEETI6 which
Notes. e
can be used from machine
1. All branches are followed by a 1 byte relative displacement. Works identically to language programs to im-
6502 branches. . . s
2. Only ADD, SUB and COMPARE can set carry. p/emerzt 16 bit 'arlthm‘e.llc
3. Notation: operations. This facility
R = a 16 bit "register’” operand designation, one of 16 labelled 0 to 16) prove] ful. f
{decimal), O to F {hexadecimal), can p -qwte use .UI’ or
ACC = register operand RO, example, in calculating ad-
@R = indirect reference, using the register R as the pointer. dresses, and serves as an
: = assignment of values. extension of the instruc-
4. Length of instructions: tion set of the 6502 which
Branches are always two bytes: op code followed by relative displacement. is reached by the /SR
Load register immediate (1R) is three bytes: the hexadecimal op code 10
to 1F followed by the 2 byte litera! value of a 16 bit number. ‘_SWEET]G escape sequence
All other instructions are one byte in length. in code.
to provide easy access to hardware features. user accesses SWEET16 with a subroutine
These are the service routines which are used call to hexadecimal address F689. Bytes
by the monitor, as well as BASIC and any stored after the subroutine call are thereafter
user routines you care to code. interpreted and executed by SWEET16. One
The St fs Si of SWEET16’s commands returns the user
e Story of Sweet Sixteen back to 6502 mode, even restoring the
While writing Apple BASIC, | ran into the original register contents.
problem of manipulating the 16 bit pointer Implemented in only 300 bytes of code,
data and its arithmetic in an 8 bit machine. SWEET16 has a very simple instruction set
My solution to this problem of handling tailored to operations such as memory
16 bit data, notably pointers, with an 8 bit moves and stack manipulation. Most op
microprocessor was to implement a non- codes are only one byte long, but since she
existent 16 bit processor in software, inter- runs approximately ten times slower than
preter fashion, which | refer to as SWEET16. equivalent 6502 code, SWEET16 should be
SWEET16 contains sixteen internal 16 bit employed only when code is at a premium
registers, actually the first 32 bytes in main or execution speed is not, As an example of
memory, labelled RO through R15. RO is her usefulness, | have estimated that about
defined as the accumulator, R15 as the 1 K bytes could be weeded out of my 5K
program counter, and R14 as a status reg- byte Apple-1l BASIC interpreter with no
ister. R13 stores the result of all COM- observable performance degradation by

PARE operations for branch testing. The selectively applying SWEET16.m
BEST OF BYTE 371

“DTCA2DOC-023-08.PICT” 261 KB 2001-04-03 dpi: 400h x 400v pix: 2592h x 3464v
| Source: David T Craig Page 0009 of 0009 |

